

### **IGBT Modules**

#### **SKM 300GA123D**

#### **Features**

- MOS input (voltage controlled)
- N channel, Homogeneous Si
- · Low inductance case
- Very low tail current with low temperature dependence
- High short circuit capability, self limiting to 6 x I<sub>cnom</sub>
- · Latch-up free
- Fast & soft inverse CAL diodes
- Isolated copper baseplate using DCB Cirect Copper Bonding Technology
- Large clearance (12 mm) and creepage distances (20 mm)

### **Typical Applications**

Switching (not for linear use)

| <b>Absolute Maximum Ratings</b> $T_c = 25$ °C, unless otherwise specifie |                                                         |                           |                         |       |  |  |  |
|--------------------------------------------------------------------------|---------------------------------------------------------|---------------------------|-------------------------|-------|--|--|--|
| Symbol                                                                   | Conditions                                              |                           | Values                  | Units |  |  |  |
| IGBT                                                                     |                                                         |                           |                         |       |  |  |  |
| $V_{CES}$                                                                | T <sub>j</sub> = 25 °C                                  |                           | 1200                    | V     |  |  |  |
| I <sub>C</sub>                                                           | T <sub>j</sub> = 150 °C                                 | T <sub>case</sub> = 25 °C | 300                     | Α     |  |  |  |
|                                                                          |                                                         | T <sub>case</sub> = 80 °C | 220                     | Α     |  |  |  |
| I <sub>CRM</sub>                                                         | I <sub>CRM</sub> =2xI <sub>Cnom</sub>                   |                           | 400                     | Α     |  |  |  |
| $V_{GES}$                                                                |                                                         |                           | ± 20                    | V     |  |  |  |
| t <sub>psc</sub>                                                         | $V_{CC}$ = 600 V; $V_{GE} \le 20$ V; $V_{CES} < 1200$ V | T <sub>j</sub> = 125 °C   | 10                      | μs    |  |  |  |
| Inverse Diode                                                            |                                                         |                           |                         |       |  |  |  |
| I <sub>F</sub>                                                           | T <sub>j</sub> = 150 °C                                 | $T_{case}$ = 25 °C        | 300                     | Α     |  |  |  |
|                                                                          |                                                         | T <sub>case</sub> = 80 °C | 200                     | Α     |  |  |  |
| I <sub>FRM</sub>                                                         | I <sub>FRM</sub> =2xI <sub>Fnom</sub>                   |                           | 400                     | Α     |  |  |  |
| I <sub>FSM</sub>                                                         | t <sub>p</sub> = 10 ms; sin.                            | T <sub>j</sub> = 150 °C   | 2200                    | Α     |  |  |  |
| Module                                                                   |                                                         |                           |                         |       |  |  |  |
| I <sub>t(RMS)</sub>                                                      |                                                         |                           | 500                     | Α     |  |  |  |
| $T_{vj}$                                                                 |                                                         |                           | - 40 <b>+</b> 150 (125) | °C    |  |  |  |
| T <sub>stg</sub>                                                         |                                                         |                           | - 40+ 125               | °C    |  |  |  |
| V <sub>isol</sub>                                                        | AC, 1 min.                                              |                           | 2500                    | V     |  |  |  |

| Characteristics $T_c =$ |                                                   |                                         | 25 °C, unless otherwise specified |      |       |       |
|-------------------------|---------------------------------------------------|-----------------------------------------|-----------------------------------|------|-------|-------|
| Symbol                  | Conditions                                        |                                         | min.                              | typ. | max.  | Units |
| IGBT                    |                                                   |                                         |                                   |      |       |       |
| $V_{GE(th)}$            | $V_{GE} = V_{CE}$ , $I_C = 8 \text{ mA}$          |                                         | 4,5                               | 5,5  | 6,5   | V     |
| I <sub>CES</sub>        | $V_{GE} = 0 V, V_{CE} = V_{CES}$                  | T <sub>j</sub> = 25 °C                  |                                   | 0,1  | 0,3   | mA    |
| $V_{CE0}$               |                                                   | T <sub>j</sub> = 25 °C                  |                                   | 1,4  | 1,6   | V     |
|                         |                                                   | T <sub>j</sub> = 125 °C                 |                                   | 1,6  | 1,8   | V     |
| r <sub>CE</sub>         | V <sub>GE</sub> = 15 V                            | T <sub>j</sub> = 25°C                   |                                   | 5,5  | 7     | mΩ    |
|                         |                                                   | T <sub>j</sub> = 125°C                  |                                   | 7,5  | 9,5   | mΩ    |
| V <sub>CE(sat)</sub>    | I <sub>Cnom</sub> = 200 A, V <sub>GE</sub> = 15 V | T <sub>j</sub> = °C <sub>chiplev.</sub> |                                   | 2,5  | 3     | V     |
| C <sub>ies</sub>        |                                                   |                                         |                                   | 15   | 19    | nF    |
| C <sub>oes</sub>        | $V_{CE} = 25, V_{GE} = 0 V$                       | f = 1 MHz                               |                                   | 2    | 2,6   | nF    |
| C <sub>res</sub>        |                                                   |                                         |                                   | 1    | 1,3   | nF    |
| $Q_G$                   | V <sub>GE</sub> = -8V - +20V                      |                                         |                                   | 2000 |       | nC    |
| R <sub>Gint</sub>       | $T_j = {^{\circ}C}$                               |                                         |                                   | 1,25 |       | Ω     |
| t <sub>d(on)</sub>      |                                                   |                                         |                                   | 250  | 400   | ns    |
| t <sub>r</sub>          | $R_{Gon}$ = 4,7 $\Omega$                          | $V_{CC} = 600V$                         |                                   | 90   | 160   | ns    |
| E <sub>on</sub>         |                                                   | I <sub>Cnom</sub> = 200A                |                                   | 26   |       | mJ    |
| <sup>t</sup> d(off)     | $R_{Goff} = 4.7 \Omega$                           | T <sub>j</sub> = 125 °C                 |                                   | 550  | 700   | ns    |
| t <sub>f</sub>          |                                                   |                                         |                                   | 70   | 100   | ns    |
| E <sub>off</sub>        |                                                   |                                         |                                   | 22   |       | mJ    |
| R <sub>th(j-c)</sub>    | per IGBT                                          |                                         |                                   |      | 0,075 | K/W   |





#### **IGBT Modules**

**SKM 300GA123D** 

#### **Features**

- MOS input (voltage controlled)
- . N channel, Homogeneous Si
- · Low inductance case
- Very low tail current with low temperature dependence
- High short circuit capability, self limiting to 6 x I<sub>cnom</sub>
- Latch-up free
- Fast & soft inverse CAL diodes
- Isolated copper baseplate using DCB Cirect Copper Bonding Technology
- Large clearance (12 mm) and creepage distances (20 mm)

### **Typical Applications**

• Switching (not for linear use)

| Characteristics      |                                                  |                                          |           |      |       |           |
|----------------------|--------------------------------------------------|------------------------------------------|-----------|------|-------|-----------|
| Symbol               | Conditions                                       |                                          | min.      | typ. | max.  | Units     |
| Inverse Diode        |                                                  |                                          |           |      |       |           |
| $V_F = V_{EC}$       | $I_{Fnom} = 200 \text{ A}; V_{GE} = 0 \text{ V}$ |                                          |           | 2    | 2,5   | V         |
|                      |                                                  | $T_j = 125  ^{\circ}C_{\text{chiplev.}}$ |           | 1,8  |       | V         |
| V <sub>F0</sub>      |                                                  | T <sub>j</sub> = 25 °C                   |           |      |       | V         |
|                      |                                                  | T <sub>j</sub> = 125 °C                  |           |      |       | V         |
| r <sub>F</sub>       |                                                  | T <sub>j</sub> = 25 °C                   |           |      |       | mΩ        |
|                      |                                                  | T <sub>j</sub> = 125 °C                  |           |      |       | $m\Omega$ |
| I <sub>RRM</sub>     | I <sub>Fnom</sub> = 200 A                        | T <sub>j</sub> = 25 °C                   |           | 80   |       | Α         |
| $Q_{rr}$             |                                                  |                                          |           | 11   |       | μC        |
| E <sub>rr</sub>      | $V_{GE} = 0 \text{ V}; V_{CC} = 600 \text{ V}$   |                                          |           |      |       | mJ        |
| $R_{th(j-c)D}$       | per diode                                        |                                          |           |      | 0,15  | K/W       |
| Module               |                                                  |                                          |           |      |       |           |
| L <sub>CE</sub>      |                                                  |                                          |           | 15   | 20    | nΗ        |
| R <sub>CC'+EE'</sub> | res., terminal-chip                              | T <sub>case</sub> = 25 °C                |           | 0,18 |       | mΩ        |
|                      |                                                  | T <sub>case</sub> = 125 °C               |           | 0,22 |       | $m\Omega$ |
| R <sub>th(c-s)</sub> | per module                                       |                                          |           |      | 0,038 | K/W       |
| M <sub>s</sub>       | to heat sink M6                                  |                                          | 3         |      | 5     | Nm        |
| M <sub>t</sub>       | to terminals M6 (M4)                             |                                          | 2,5 (1,1) |      | 5 (2) | Nm        |
| w                    |                                                  | •                                        |           |      | 330   | g         |

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

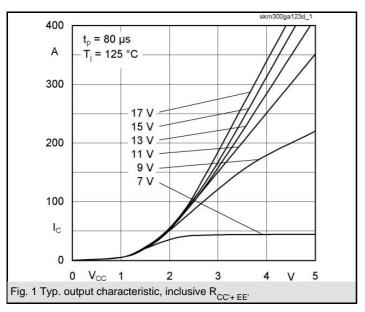
This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.

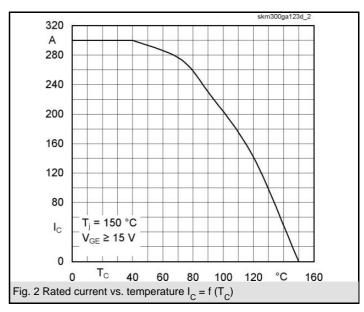


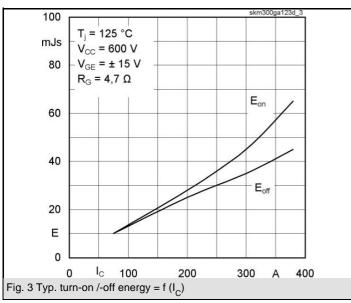


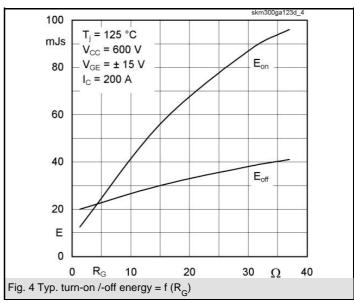
#### **IGBT Modules**

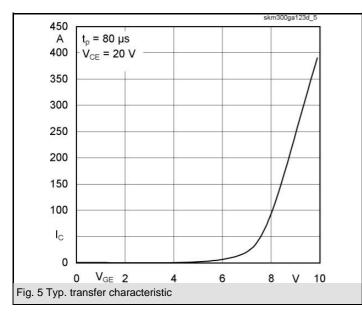
**SKM 300GA123D** 

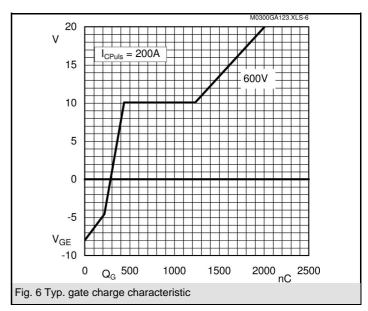

- MOS input (voltage controlled)
- N channel, Homogeneous Si
- · Low inductance case
- Very low tail current with low temperature dependence
- High short circuit capability, self limiting to 6 x I<sub>cnom</sub>
- Latch-up free
- Fast & soft inverse CAL diodes
- Isolated copper baseplate using DCB Cirect Copper Bonding Technology
- Large clearance (12 mm) and creepage distances (20 mm)

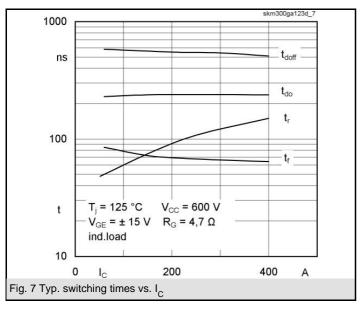

### **Typical Applications**

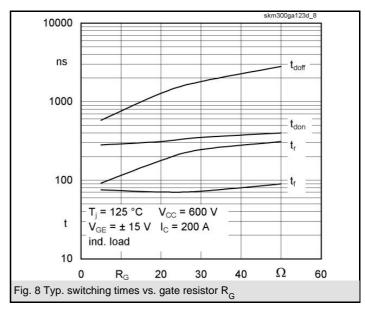

Switching (not for linear use)

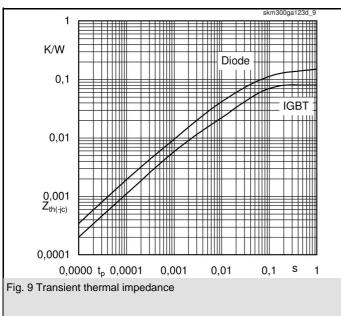


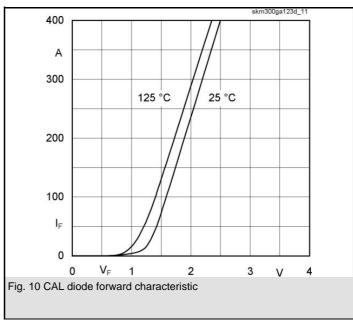


| Z <sub>th</sub><br>Symbol | Conditions | Values | Units |
|---------------------------|------------|--------|-------|
| Z <sub>th(j-c)l</sub>     |            |        | -     |
| R <sub>i</sub>            | i = 1      | 53     | mk/W  |
| R <sub>i</sub>            | i = 2      | 18,5   | mk/W  |
| R <sub>i</sub>            | i = 3      | 3,1    | mk/W  |
| R <sub>i</sub>            | i = 4      | 0,4    | mk/W  |
| tau <sub>i</sub>          | i = 1      | 0,04   | S     |
| tau <sub>i</sub>          | i = 2      | 0,0189 | S     |
| taui                      | i = 3      | 0,0017 | s     |
| tau <sub>i</sub>          | i = 4      | 0,003  | s     |
| Z <sub>th(j-c)D</sub>     |            |        | ·     |
| R <sub>i</sub>            | i = 1      | 85     | mk/W  |
| R <sub>i</sub>            | i = 2      | 30     | mk/W  |
| R <sub>i</sub>            | i = 3      | 8,8    | mk/W  |
| R <sub>i</sub>            | i = 4      | 1,2    | mk/W  |
| tau <sub>i</sub>          | i = 1      | 0,04   | s     |
| tau <sub>i</sub>          | i = 2      | 0,0044 | s     |
| taui                      | i = 3      | 0,0078 | s     |
| tau <sub>i</sub>          | i = 4      | 0,005  | s     |

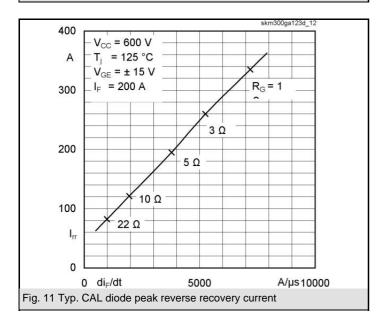


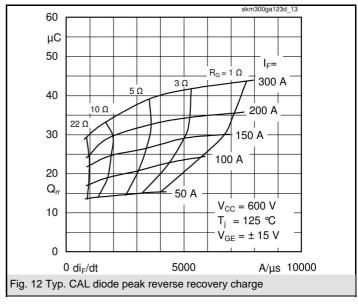



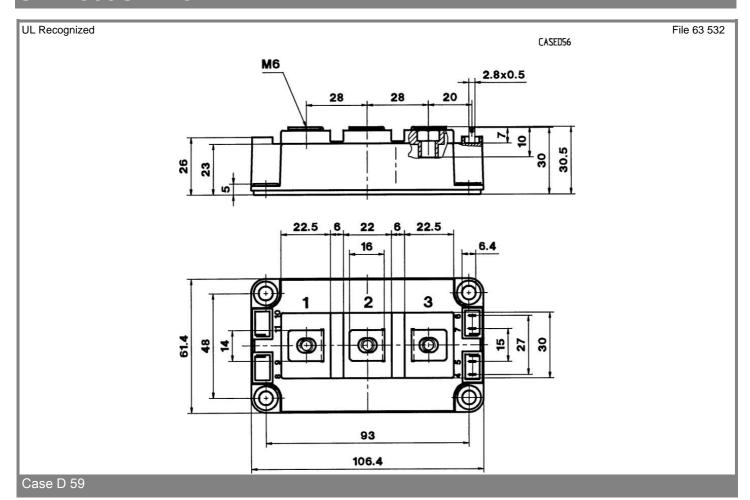



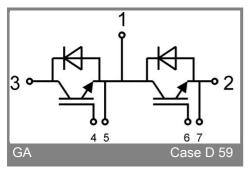














6 30-05-2007 SEI © by SEMIKRON